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Biased Lattice Gases with Correlated 
Equilibrium States 

H. J. Bussemaker I and M. H.  Ernst 1 

The approach to and structure of the equilibrium state is studied for a 7-bit 
lattice gas with biased forward and backward transition rates by means of mean 
field theory and computer simulations. If the rate constants obey the 
factorizability and the detailed balance conditions, the occupations of different 
velocity directions are uncorrelated, an H-theorem is valid, and a nonuniversal 
equilibrium state exists that depends explicitly on the transition rates. In case 
the above conditions are not satisfied, the H-theorem is no longer valid, and 
mean field theory also predicts nontrivial velocity correlations in postcollision 
states. The simulations are mainly concentrated on the time dependence of 
pre- and postcollision velocity correlations on a single node, and on slowly 
increasing fluctuations that might indicate metastable behavior. 

KEY WORDS: Velocity correlations in equilibrium; lattice gas automata; 
biased transition rates; detailed balance; H-theorem; nonuniversal equilibrium; 
metastabilities. 

1. I N T R O D U C T I O N  

How can a system of point  particles with strictly local dynamics  have equi- 

l ibr ium dis t r ibut ions in which different velocities are correlated? In  their 
search for lattice gas models with large Reynolds numbers  Dubru l le  et at. (l~ 
have in t roduced strongly biased collision dynamics, where certain in-states 

scatter into out-states, bu t  the reverse t ransi t ions are forbidden. For  

instance, the out-states on a single node may be biased in favor of pairs of 

particles leaving under  certain angles. These velocity correlat ions may  

persist through subsequent  p ropaga t ion  steps, leading to in-states in which 
the occupat ions  of velocity channels  are correlated. Simulat ions of 
Dubru l le  et aL and  H6non  (2) on the pseudo-4-dimensional  F C H C  model  
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have shown the existence of such correlations, but a theoretical explanation 
does not exist. 

To motivate the research reported here, v/e quote from ref. 1: "An 
immediate objective is therefore to understand how these correlations are 
created, and then, if possible, to invent appropriate remedies in order to 
decrease the size of the correlations." We formulate the problem in the 
broader context of interest for models of fluids and chemical reactions. 

The basic question is therefore: given a time evolution that consists of 
two processes, (i) collisions or reactions, and (ii) propagation, possibly 
diffusive, why does a bias between forward and backward transitions 
induce a steady state with correlations? 

Clearly, an asymmetry or bias in the transition probabilities A~s and 
A s~ from state s to state o- and vice versa may lead to a detailed balance 
situation, A~spo(s ) = As~po(a), with po(s) the appropriate equilibrium dis- 
tribution. As we shall discuss, it appears to be the incompatibility of several 
possible transitions (collisions, reactions), occurring simultaneously in the 
system, that leads to the violation of the detailed balance conditions. If two 
types of reactions are incompatible, more complicated cyclic processes 
are required to sustain the equilibrium state. (3) These cyclic reactions 
(probably ring collisions) involve the collision/reaction step as well as 
the propagation step. The biased transitions may create strong correlations 
directly after the transition. The propagation step will move the individual 
particles/reactants to different positions, thus forming a new pretransition 
state. One expects that free streaming partially destroys the correlations on 
the same node. 

In order to study these fundamental issues, we have constructed a 
7-bit lattice gas automaton on a triangular lattice, which has the maximum 
possible number of 20 continuously adjustable forward and backward rate 
constants. It contains of course the FHP I, II, and III models as special 
cases. The present model is related to the biased triangular lattice gas with 
6 moving and 3 rest particles introduced by d'Humi~res etaL, (4) which has 
one adjustable parameter. Lattice gases with adjustable rate constants have 
also been used in the literature (5'6) to increase the so-called non-Galilean 
factor G(p) (see ref. 7) to a value close to unity. 

If the biased transition rates allow the existence of a completely 
factorized equilibrium state, an H-theorem exists that guarantees the 
uniqueness and stability of an equilibrium state that does not contain any 
correlations. This state may be nonuniversal, in the sense that it depends 
explicitly on the transition rates. 

If the transition rates are incompatible, the H-theorem is no longer 
valid and there exist in general on- and off-node correlations between 
different velocity channels. 
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In a separate publication ~8) we have developed a mean field theory 
based on the assumption that there exist only weak correlations between 
different nodes in the lattice gas. This approach leads to the nonlinear 
Boltzmann equation, and to an approximate description of the post- 
collision correlations, created by the biased collision rules. Precollision 
correlations are vanishing in the mean field approximation. 

The main goal of this paper is to investigate the behavior of velocity 
correlations close to and in the final equilibrium state by means of 
computer simulations, to compare the results with the predictions of mean 
field theory, and to asses the limits of its validity. 

The paper is organized as follows. Section 2 contains a brief summary 
of the mean field theory for biased lattice models. Is) The details for the 
7-bit triangular lattice gas are worked out in Section 3. Simulation results 
are presented and analyzed in Section 4. The main emphasis is on velocity 
correlations in systems with incompatible transition rates and on the 
appearance of metastable behavior. Section 5 ends with a summary and 
outlook. 

2. M E A N  FIELD T H E O R Y  

Before presenting a summary of the mean field theory, we give some 
basic definitions. A lattice gas automaton (LGA) is a collection of N 
indistinguishable particles which are, at integer times (t = 0, 1, 2,...), located 
at the nodes r of a regular d-dimensional lattice with V= L d nodes and 
with periodic boundary conditions. 

At each node there is a (small) set of allowed velocities (e~} (e.g., 
nearest neighbor vectors), where i =  1, 2 ..... b -  1. The label i = 0 refers to a 
rest particle with Co =0.  The state of a node is described by the set of 
occupation numbers s ( r )=  {s~(r); i =  0, 1, 2 ..... b -  1 ), where s~(r) takes the 
values 0 or 1. There a r e  2 b possible states at a node. 

The time evolution of the lattice gas automaton consists of a collision 
step and a propagation step. The stochastic collision rules only involve 
particles at the same node r and are given in terms of a 2bx 2 b matrix 
A~s of transition probabilities 2 from an in-state s(r) to an out-state a(r) with 
normalization, for all s, 

A~s= 1 (2.1) 
o- 

The collision rules conserve the number of particles p(s(r) )= 5Zi si(r) and 
momentum g(s( r ) )=  Z i  e~si(r) per node. In the subsequent free streaming, 

2 Notice that the order of labels in A~s is reversed with respect to ref. 7. 
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step particles are moved to the nearest neighbor nodes in the direction of 
their velocities. 

Next we introduce the phase space or F-space as the set of all 2 by 

configurations s =  {s(rl), s(r2),..., s(rv)} and consider an ensemble with a 
probability distribution N(s, t). Its time evolution is given by the Liouville 
equation. (7,s/ In the present paper the main emphasis is on the single-node 
distribution function, defined as 

p(s(r), t) = ~  6(s(r), a(r)) ~(6 ,  t) (2.2) 

where 6(s, ~) = I-[j 6(sj, aj) is a product of Kronecker deltas. By integrating 
out the redundant variables in the Liouville equation for the collision step, 
one obtains the exact relation 

p'(a, t ) = ~  A~sp(S, t) (2.3) 
s 

It connects the precollision distribution p at a single node to the post- 
collision one, p' = Ap. 

The free streaming step will be accounted for only within mean field 
theory and only for a spatially uniform system. As we are interested in the 
structure of and approach to the final equilibrium state, we restrict further 
discussions to spatially uniform nonequilibrium systems where the mean 
field occupation numbers 

fj(r, t) = ~ sj(r) p(s(r), t) (2.4) 
s(r) 

are translationally invariant. The basic assumption in the mean field 
description is the neglect of off-node correlations, i.e., ~ ( s , t ) =  
[ I r  p(s(r), t). On the basis of this assumption we have argued in re[ 8 that 
the precollision distribution p(s, t) in mean field theory is given by the 
completely factorized form (without any correlations) 

p(s, t ) =  [ I  [ fJ( t )]  ~ [ 1 - f j ( t ) ] ' - s j  (2.5) 
J 

and that the mean field occupation number f j ( t )  satisfies the nonlinear 
Boltzmann equation (NLBE) for the spatially uniform case, 

Af,.(t) - f~ ( t  + 1) - f i ( t )  = Ii(f(t)) (2.6) 

The nonlinear collision term is defined as (7) 

I i ( f )  = ~ (cri-- si) A~, l~ ffJ(1 __f j . ) l - - s j  (2.7) 
6%S j 
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The factorized form, 

p o ( s ) - p ( s ,  oo)= [ [  [ f j (oo) ]  sj [1 - f j . (oo) ]  ' -s j  (2.8) 
J 

denotes the single-node distribution in the steady state, and f j(oo) the 
corresponding mean occupation number. Here we only consider basic equi- 
libria of systems that are macroscopically at rest, i.e., the total momentum 
is vanishing. The existence of a unique and stable equilibrium solution 
fy(oo) follows within mean field theory from an H-theorem. However, 
the NLBE will not obey such a theorem for an arbitrary chosen set of 
transition rates A~s. We have shown in ref. 8 that the NLBE for biased 
lattice models satisfies an H-theorem provided the factorized single-node 
distribution (2.8) is invariant under collisions, i.e., the factorized form (2.8) 
is a right eigenvector of the asymmetric transition matrix with eigenvalue 
unity, 

Aospo(S) = po(a) (2.9) 
s 

Condition (2.9), imposed on the factorized form (2.8), is referred to as the 
factorized equilibrium condition, and guarantees the existence of a factorized 
equilibrium state without any velocity correlations. It is a very restrictive 
condition on the transition rates. For instance, consider the 7-bit F H P  
model in basic equilibrium, where 

fj(~)= {fo-Zo/(l + + z) (j--- 0) 
(2.10) 

( j = l , 2  ..... 6) 

by lattice symmetries. Then the factorized form (2.8) contains only two free 
parameters (fo, f )  or (zo, z), which have to satisfy the 2 7 = 128 conditions 
in (2.9). What are the most important consequences of (2.9)? 

(i) If the factorized equilibrium condition (2.9) cannot be satisfied for 
given transition rates, there exist on- and off-node correlations between the 
occupations of the different velocity channels in pre- and postcollision 
steady states. (8) 

(ii) If the factorized equilibrium condition (2.9) is satisfied, the fully 
factorized distribution ~o(s) = I~r po(s(r)) with Po as defined in (2.8), is an 
exact solution of the Liouville equation. Pre- and postcollision distribu- 
tions are identical and velocity correlations are absent. However, the equi- 
librium distribution has in general a nonuniversal form that depends 
explicitly on the transition rates. In the unbiased LGCAs the F-space 
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distribution has a universal form, as it depends only on the total conserved 
quantities, not on the rate constants. 

For the biased 7-bit FHP models one has the nonuniversal distribu- 
tions, 

po( s ) = q - l zSo~ - ,o 

~O(N ) = Q -1z~O(S)zN(S)- N0(s) (2.11 ) 

= Q-1 exp[0oNo(s) + eN(s)] 

where Oo=ln(zo/z) ,  ~ = l n  z, and No(s)=Zrso( r )  is the (nonconserved) 
total number of rest particles. The normalization factors are 
q = ( 1  + zo)(1 + z )  6 and Q = q V  

(iii) When does a un#ersal equilibrium form apply? Consider the 
special case f j ( o e ) = f  for all j ( j = 0 ,  1, 2,..., b - 1 ) ;  then the steady-state 
distribution satisfies (2.11) with ~o=0 ,  i.e., 

po(S) = q l"zP(S) (2.12) 

~o(S) = Q 1 exp[eN(s)] 

The F-space distribution has the universal form of the Gibbs' distribution 
in ensemble theory. To determine when this special case is realized, one 
inserts po(s) of (2.12) into condition (2.9), which reduces on account of the 
conservation laws to the universality condition, 

A~, = 1 (2.13) 
s 

as has been derived in ref. 8 under more general conditions. This univer- 
sality condition is in fact a necessary condition for the Liouville equation 
to have universal equil!brium solutions that depend on the configuration s 
only through global invariants, such as total number of particles, total 
momentum, and total energy in thermal models. In ref. 7 the above condi- 
tion is called the "semi-detailed balance condition." 

(iv) The factorized equilibrium state po(s) in (2.8) may obey the even 
more restrictive condition of detailed balance, which reads in its standard 
form (3) 

A ~sPo(S) = A,~Po(a) (Va, s) (2.14) 

It implies (2.9) on account of the normalization (2.1). The above condition 
represents 2b-1(2 b -  1) compatibility relations, imposed on the 2 b com- 
ponents of po(s) for given rate constants. 

As we shall see in the next section, for the biased 7-bit model the 
factorized equilibrium condition (2.9) and the detailed balance condition 
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are equivalent. The reason is that our biased model has at most two equiv- 
alence classes per family (see Section 3). However, in models with more 
equivalence classes per family, condition (2.14) is more restrictive than 
(2.9). 

As shown in ref. 8, the factorized detailed balance solution does have 
a universal form if the symmetry condition 

A~s=Aso (2.15) 

is satisfied. We want to point out that in ref. 7 the terminology "detailed 
balance" is used in the very restricted meaning (2.15), which guarantees a 
detailed balance with respect to the universal equilibrium distribution. 

In the next sections these different conditions will be investigated 
analytically and by computer simulations for the biased F H P  model. In 
fact, we shall find factorized equilibrium solutions that do obey the detailed 
balance condition (2.14), although the transition rates are not symmetric, 
and do not satisfy the symmetry condition (2.15). 

3. BIASED FHP MODELS 

3.1. Families and Equivalence Classes 

The general considerations of the previous sections will be applied to 
the 7-bit F H P  model defined on the triangular lattice. The set of velocity 
vectors {ei} consists of the nearest neighbor lattice vectors ( i=  1, 2 ..... 6) 
and a rest particle ( i=  0 with Co= 0). There are 27= 128- possible states 
s = {So, sl ..... s6} per node, shown in Table ! for states with p(s) ~< 3 and 
gx<~ gy<~O. (9) The remaining states can be obtained from Table I by 
interchanging particles and holes and by applying symmetry operations. At 
a node, the number of particles p(s), the x momentum g~(s) = lpx(s ), and 
y momentum gy(S)=�89 ) are conserved during collisions. Non- 
vanishing transition rates A~s from an input state s to an output state o- can 
exist only between states belonging to the same family, (1~ i.e., within the 
set of states having the same conserved quantities p, gx, and gy. Therefore 
the states are ordered in 20 different families, characterized by the label 

= (p, px, py), with Px >1 Py >>-O. These 20 families are not linked by lattice 
symmetries. Ten of them are shown in the rows of Table I. The transition 
matrix Aos therefore has a block diagonal form A ~ s 6 ~ , ,  diagonal in the 
family label ~ .  There are 12 families with only one state, in which 
Aos(o~) =6os is one-dimensional. The families ~ = (220) and - ~ =  (520) 
are 2-state families, where A~s(O~) is a 2 x 2 matrix. There are four 3-state 
families @ = (200), (320), (420), (500) with a 3 x 3 block matrix, and two 
5-state families ~ = (300) and (400) with a 5 x 5 block matrix. 
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Table I. Families ~ - -  (p, Px, Py) and Equivalence Classes ~.~ 

(0, 0, 0) 

(1, 0, 0) 

(1, 2, 0) - ~  

(2, 2, 0) - ~ -  

(2, 3, 2) 

(3,o,o) - . - ~  - - ~  

(3,2,0) ---~ - ~  

(3, 3, 2) 

(3, 4, 0) -)~'- 

Families with 4 ~< p(s) ~< 7 follow from a duality transformation. 

Furthermore, the states within a family ~ are divided into equivalence 
classes(lO) cg,(~) with n = 1, 2 ..... All states within one equivalence class are 
linked by lattice symmetries (rotations, reflections). A family in the 7-bit 
model contains at most two equivalence classes, Z I ( ~ )  and cg2(~), respec- 
tively without and with a rest particle. As the collision rules must preserve 
these symmetries, the transition rates between different states with the same 
momentum within the same equivalence class are all equal. 

3.2. Detai led Balance Condit ions 

We first make a remark on eigenvectors p 0 ( ~ )  of a block matrix with 
eigenvalue unity, A ( ~ )  p o ( ~ )  = po(~) ,  which are of interest in view of the 
condition (2.9) for the existence of a factorized equilibrium state. For  
an equilibrium system at rest all components of po(s) within the same 
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equivalence class are equal due to the lattice symmetries, i.e., po(s)= Pn 
for s ~ c~,(~) (n=  1, 2,...). 

After this remark, we illustrate the block matrix for the 3-state family 
.~ = (200) (which consists of only one equivalence class), together with the 
relevant eigenvector. The .~ = (200) block of the factorized equilibrium 
condition (2.9) then reads 

(1-2q q q ~(p,~ 
po(200)=A(200)po(200)= 1 ~ 1-2qq 1 - 2 q / \ p , / q  ] IP'] (3.1) 

where 0 ~< q ~< �89 This equation reduces to an identity, and the (200) block 
of condition (2.9) does not impose any constraints. 

From similar arguments we deduce for the 5-state family @ = (300) 
with two equivalence classes, that the (300) block of condition (2.9) 
requires 

p0(300) = A(300) p0(300) 

/ l - - q3wq  v v v k/pt k 
Q q l--q--3w v v ' / / " ' /  

= w w I - 2r - 2v r r P2 
w w r 1 - 2 r - Z v  r ] \ P 2 ]  
w w r r 1 - 2 r - 2 v / \ p z /  

(3.2) 

where all entries are positive. In the (300) block there are 4 independent 
rate constants: the intraclass rates q ( ~ )  inside class cgl(~ ) without rest 
particles, and r(<~) inside class ~2(~-) with rest particles, and the interclass 
rates v(.~) and w(.~). By convention w(Y) denotes the transition 
probability from a state in class cgl(~-) to one in Cgz(Y), and v(Y) the 
probability for the reverse transition. Condition (3.2) then reduces to the 
contracted 2 x 2 form, 

( p l )  = ( 1 - 3 W p 2  2w 1 --3v2v )(P~)p2 (3.3) 

o r  

w(300) p1(300) = v(300) pz(300) (3.4) 

which is the DB condition. This equation (3.4) represents a subset of the 
detailed balance (DB) conditions (2.14) for all states s and a belonging to 
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the class cg1(300 ) and cg2(300 ), respectively. In all models with a maximum 
of two equivalence classes per family the factorized equilibrium condition 
(2.9) and the DB condition are identical. 3 The DB condition in its con- 
tracted form depends on the interclass transition rates v, w, but does not 
depend on the intraclass rates q, r. The same applies to the components 
po(~)  of the equilibrium distribution po(s). In the absence of any interclass 
transitions the equilibrium distribution would have the universal Gibbs 
form. The interclass transition rates determine the explicit form of po(~)  
and may therefore lead to nonuniversal equilibrium states. 

By repeating the above arguments it follows that the subset of DB 
conditions for Y blocks consisting of families with a single equivalence 
class do not impose any constraints on p0(~).  The six families (see 
Table I) with two equivalence classes, having respectively states with and 
without rest particles, will give a total of six DB constraints, 

w(~) p l (~ )  = v(~) p2(~) (3.5) 

Unbiased lattice gases have equal forward and backward rates, 
v ( ~ )  = w ( ~ )  (some of which may vanish) for all ~-, and the equilibrium 
state becomes again the universal Gibbs state (2.12): the universality 
condition (2.13) or "semi-detailed balance condition" of ref. 7 is satisfied. 
These unbiased models include the FHP I, II, and III models. ~9) Biased 
FHP models are the collection of all possible 7-bit models on the triangular 
lattice with v ( ~ ) ~  w ( ~ )  for at least one ~ value. 

The explicit form of the equilibrium states in the biased FHP models 
can be determined by inserting the factorized form po(s) in (2.11) into 
condition (2.9). In particular, we have for the components in (3.5), 
p l ( ~ - ) = z  pls) and p 2 ( ~ ) = Z o  zp(s)-l, referring, respectively, to states 
without and with a rest particle. These factorized forms with two 
parameters (Zo, z) or (fo, f )  have in fact only one free parameter if the 
average density p = f o  + 6f is prescribed. They yield in combination with 
the factorizability condition six DB conditions, 

v ( ~ )  Zo = w(~)  z (3.6) 

where ~- = (220), (300), (320), (420), (400), or (520) labels the six families 
in Table I that contain two equivalence classes. In biased FHP models 
v ( ~ ) # w ( ~ )  for at least one family, say ~-~. So condition (3.6) for 
together with the condition 

Zo 6z 
p =  fo + 6 f  - - -  + - -  (3.7) 

1 +Zo 1 + z  

3 In a 13-bit LGA on a triangular lattice or in the isometric FCHC model there are many 
more equivalence classes in certain families. 
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completely fixes the equilibrium distribution (2.11) with parameters z0 and 
z. The five additional requirements in (3.6) can be obeyed if the rate 
constants either satisfy 

v( ~ )/w( J ) = v(oN )/w( ~ ) (3.8) 

o r  

v(Y) = w(Y)  = 0 (3.9) 

If the rate constants indeed obey all six DB equations, then (3.6) in com- 
bination with (3.7) gives a quadratic equation for z. Hence f0 and f are 
known. In this case the equilibrium state is in detailed balance with respect 
to the nonuniversal fully factorized F-space distribution (2.11). The non- 
universal parameter 

~9o = ln(zo/z ) = In [ w ( ~ ) / v ( ~  ) ] (3.1o) 

depends explicitly on the transition probabilities. In the fully factorized 
equilibrium state (2.11 ) there do not exist any velocity correlations before or 
after collision. If the more restrictive universality condition (2.13) holds, 
the equilibrium state is in detailed balance with respect to the universal 
equilibrium distribution (2.11 ) with 0o = ln(zo/z) = O. 

In more general F H P  models the six DB conditions (3.6) together 
with the factorized form (2.8) are incompatible, so no fully factorized 
equilibrium exists, and velocity correlations do exist. In particular any 
self-dual biased F H P  model cannot obey the DB conditions and shows 
therefore velocity correlations. The argument goes as follows: let family 
be the dual of family 4 ,  appearing in (3.10). For the self-dual model, 
v ( ~ ) = w ( o ~ )  and v ( ~ ) = w ( ~ ) .  For a DB model Zo/Z=W(~)/v(o~)= 
w ( ~ ) / v ( ~ ) .  Consequently, for a biased model, where v (o~)#  w(J~), these 
two relations are incompatible. 

3.3. Mean Field Averages and Correlations 

Suppose that conditions (2.8) and (2.9) cannot be satisfied 
simultaneously. Then there exist velocity correlations in the pre- and 
postcollision states. However, mean field theory still assumes in all cases 
vanishing precollision correlations, but predicts a nonvanishing postcolli- 
sion correlation. The question, to be tested by computer simulations, is 
therefore: is this prediction relevant and to what extent does the relevance 
depend on the size of the precollision correlations? 

The basic idea underlying the mean field theory is that biased collision 

822/68/3-4-7 
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rules create postcollision correlations among the velocities of particles on 
the same node, which are destroyed, perhaps only partially, by the subse- 
quent free streaming step. The resulting on-node precollision correlations 
may still be sufficiently small so that the mean field theory of Section 2 
applies. This would then yield the time dependence of the average occupa- 
tions f j( t)  and a nontrivial prediction for the postcollision distribution 
p'(s, t) and for the resulting velocity correlations. 

We first consider the collision term I i ( f )  in (2.7) of the NLBE in a 
spatially uniform nonequilibrium state which is macroscopically at rest, i.e., 
f j( t)  = f0(t) for j =  0 and fs(t ) = f ( t )  for j =  1, 2 ..... 6, with f0( t )+  6 f ( t )=  p a 
constant. Hence, there is only one unknown, say fo(t). The collision term 
Ii(f(t)) contains the factorized single-node distribution function p(s, t) in 
(2.5) of the precollision state. For intraclass (s--*a) transitions, one 
has p(s, t)= p'(cr, t), and A os=As~. One shows with the help of these 
properties that all terms in (2.7) referring to intraclass transitions give a 
vanishing contribution to the collision term. It therefore contains only gain 
and loss terms coming from interclass transitions in which the number of 
rest particles changes (see Table I). 

The equilibrium distribution (2.10) is obtained by solving the 
stationary NLBE, I j ( f (oe ) )=0 ,  where we can restrict ourselves to j = 0 .  
More explicitly, 

.~ (ao-- so) A~,z~o~ p(s) s~ (3.11) 
ff, s 

where we have used po(s) in (2.11). By setting the sum of all loss terms 
equal to the sum of all gain terms, one finds 

Z 0 W220 q- Z(W30 o h_ 2W320) + z2(w400 -~ 2W42o) + z3ws2o 
Z - -  ~)220 -t- Z(V300 ~- 2V320) -t- Z 2(/)400 ~- 2~420) "~- Z 3/)520 (3.12) 

where v~ and w~ are short for v ( ~ )  and w(~) .  In biased models the 
forward and backward transition rates are unequal in at least one family. 
Equation (3.12) combined with p = f o + 6 f  reduces to a polynomial of 
degree 5 in z. If the rate constants in (3.12) satisfy the detailed balance 
requirements (3.8)-(3.9), the mean field equation (3.12) also reduces to 
(3.6). Some comments follow. 

Physically acceptable solutions have positive real Zo and z with 
0 < p < 7. If detailed balance conditions are satisfied, it can be shown that 
the equilibrium distribution is stable and unique (although it may be non- 
universal) and independent of the initial conditions on account of the 
H-theorem. If detailed balance conditions are violated, an H-theorem is 
lacking, and it might happen, in principle at least, for special choices of the 
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transition probabilities that f j( t)  converges to different fixed-point solutions 
fj(oo), depending on the initial conditions. 

If the symmetry between particles and holes is maintained by the 
dynamics, as can be guaranteed by choosing self-dual rate constants, a 
detailed balance equilibrium cannot exist, as discussed in the previous sub- 
section. The precollision correlations may still be sufficiently small, so that 
the factorized form of po(s) is still a reasonable Ansatz. However, because 
the DB conditions (3.5) are not satisfied, the postcollision distribution p'o(S) 
cannot be factorized and the occupations of the different velocity channels 
are correlated. 

The analytic form offo(t) as a function of p, the time scales, and non- 
uniformities in the approach to equilibrium can be understood on the basis 
of the nonlinear Boltzmann equation, as we shall illustrate for a simple 
example of a nonuniversal detailed balance model, where only the inter- 
class rates v(220)= v and w(220)= w are nonvanishing. Here the NLBE 
has the form 

Afo = {w(1 - f o ) f -  vf0(1 - / ) } / ( 1  _ f ) 4  (3.13) 

where A f - f ( t  + 1) -  f(t) denotes a forward finite difference. The solution 
shows that fo(t) converges to a stable equilibrium distribution fo(c~) for 
any initial value f o(0), where 0 < f 0  < 1. For v = 0, w > 0  one has 

f ~ 1 7 6 1 7 6  if 1~<p~<7 (3.14) 

For v > 0, w = 0 one has 

f0(oo) = S0 if 0~<p~<6 (3.15) 
p - 6  if 6~<p~<7 

For v = w > 0  one has the universal equilibrium distributions 
f o ( ~ ) = f ( ~ ) = l p  of the models FHP I, II, and IIIJ 9) For v, w > 0  and 
v ~ w  the population fo(OV) is the solution of a quadratic equation [see 
(3.6) and (3.7)] with p as a parameter, 

(v--w) f~ + [(w--v) p+6v + w] fo-- wp=O (3.16) 

Note that this equation only depends on v and w through the ratio w/v. 
For all detailed balance models the dependence of fo on p is described by 
the same equation (3.16). 

The detailed predictions on time and density dependence of the mean 
occupation numbers, and the velocity correlations before and after colli- 
sion, will be compared with computer simulations in the next section. 
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4. SIMULATION RESULTS 

4.1. Description of Simulations 

In this section we compare the results of computer simulations with 
the detailed balance considerations and the mean field theory. The simula- 
tions have been performed on a 50 x 50 triangular lattice. In each realiza- 
tion the initial state was prepared by distributing exactly Ni=pV/7 
(i = 0, 1, 2 ..... 6) particles in the velocity channel with label i, in a random, 
but spatially uniform manner over the lattice. Hence it could be guaranteed 
that the initial ensemble contains realizations with exactly the same 
number of particles N(s) = pV and with momentum P(s(. )) = 0. 

To study the equilibrium values of averages and correlations between 
channel occupations, most measurements are carried out after 200 time 
steps. We measure in fact the 27 components of the single-node distribution 
function p(s, t) and p'(s, t), respectively. Their number reduces by lattice 
symmetries from 128 to 26 independent components (see Table I). 

The components p(s, t) and p'(s, t) are obtained by averaging over all 
502 nodes and over all configurations linked by lattice symmetries. At each 
density we have averaged over an initial ensemble of 20 different realiza- 
tions. 

The precollision occupations numbers ( s i ) = f i  are' then obtained 
from (2.4). The covariances C~(t) measure the precollision correlations 4 at 
time t between the occupations of different velocity directions on the same 
node, 

(6si6sj> Zs sesjp(s) 
Cij (s~)(sj) f~fj 1 (4.1) 

Furthermore, f j  a n d  C~ denote postcollision values. There are only four 
different correlations, i.e., C01, C12, C13, and C14 , due to the lattice 
symmetries. In mean field theory precollision correlations are assumed to 
be vanishing. 

The number of collisional parameters equals 20 [8 intraclass q(~) ,  
r(~-), and 12 interclass v(o~), w(~ ) ] ,  and therefore the parameter space is 
much too large to be investigated systematically. According to the detailed 
balance considerations of Section 3 and the mean field theory of Section 2, 
detailed balance equilibria are independent of intraclass transition rates. 
However, we have observed that the correlations may  depend on intraclass 
transition rates in case the transition rates do not obey detailed balance. 

4The correlation functions cg~ defined by Dubrulle e taL  o) are related to (4.1) as 
Co= [( l / f+-  1)(1/fj- 1)] 1/z cg0.. 
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With a total of about 50 different sets we hope to have studied a repre- 
sentative collection of parameter sets that covers most essential features of 
the model. The transition rates for the sets discussed in this paper are given 
in Table II. 

Figures 1 and 2 show why we have chosen the relatively long relaxa- 
tion time of 200 time steps for measuring the mean occupations and the 
correlations between the different velocity channels. 

Figure 1 shows the mean occupation of rest particles fo(t) as a 
function of p over the full density range (0~<p~<7) at different times 
(t = 0, 2, 20, 200) for the biased triangular lattice gas with the parameter 
set #28, both from simulations and from mean field theory. The corre- 
sponding rate constants are listed in Table II. The initial configuration 
was selected from the completely factorized initial distribution ~(s, 0) 
in (2.8), specified by ~ ( 0 ) =  1 vP for j =  0, 1 ..... 6. The velocity correlations 
reported in ref. 1 for the FCHC model were measured using the same initial 
nonequilibrium ensemble. In unbiased models fo=~p represents the 
(universal) equilibrium value. The density of moving particles is always 
given by f =  ~ (p - fo ) .  

Comparison of Table II with (3.8) shows that column #28 contains 
four incompatible ratios v(~)/w(o~), so that set #28 violates detailed 
balance and is not factorizable. The set is self-dual, which accounts for the 
symmetry (fo, P) *--* (1 - f o ,  7 - p). The linear portions fo = +P for p < 0.7 

Table II. Transition Rates for the Parameter Sets Used in This Paper, for the 
FHP III Mode l ,  and for the HLS model of Ref. 4 

Set FHP HLS #3  # 7  #10  #13 #26 #28 #29 #30  #38 #39 

v/w(220) 1/1 x/1 1/0 0/1 0.01/0.99 0/0 0/1 0/1 0/1 0/1 0/1 0/1 
v/w(300) 0/0 0/0 0/0 0.4/o 0.4/o 0/0.2 0.4/0 0.4/o 0.4/o 0.4/o 0.1/0 0/0 
v/w(320) 0.5/0.5 0/1 0/0 0/0 0/0 0,1/(3 0/0 0/0 0/0 0/0 0.15/0 0.2/0 
v/w(420) 0.5/0.5 0/0.5 0/0 0/0 0/0 0/0.1 0/(3 0/0 0/0 0/0 0/0.15 0/0.2 
v/w(400) 0/0 0/0 0/0 0/0.4 0/0.04 0.2/0 0/0.4 0/0.4 0/0.4 0/0.4 0/0.1 0/0 
v/w(520) 1/I 0/1 0/1 1/0 0.99/0.01 0/0 1/0 1/0 1/0 1/0 1/0 1/0 

q(200) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
q(300) 1 1 1 1 1 0.4 1 1 1 1 1 1 
q(320) 0.5 0 0.5 0 1 1 0 0 . 5 ,  0,9 1 0 0 
q(400) 0.5 0.5 0.5 0 0.1 0.5 0.1 0.1 0.1 0.1 0.1 0.1 

r(300) 0.5 0 0.5 0.1 0.1 0.5 0.1 0.1 0.1 0.1 0.I 0.1 
r(420) 0.5 0 0.5 0 1 1 0 0.5 0.9 1 0 0 
r(400) 1 5 1 1 1 0.4 1 1 1 1 1 1 
r(500) 0.5 0.5 0.5 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
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Fig. 1. Mean occupation number  of rest particles f0 versus density p for set # 2 8  at different 
times. Mean field theory at t = 0 (dotted), t = 2 (solid), t = 20 (dashed), and t = 200 (dashed- 
dotted)  compared  with computer  simulation results at t = 2 ( � 9  t = 20 ( �9 ), and t = 200 ( �9 ). 
The mean field result at t = 104 (solid line) is barely different from that at t = 200. 

(at t = 200) and its self-dual image denote equilibria with essentially only 
rest particles. 

On the basis of kinetic theory fo(t) and f(t) are expected to relax to 
equilibrium in a few mean free times. The approach to equilibrium is non- 
uniform as a function of density, as is clearly visible in Fig. 1 for 
0.5 < p < 1.5 and 5.5 < p < 6.5. Inside the density interval 2.0 < p < 5.0 the 
distribution function does indeed equilibrate after about  20 time steps. 
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Fig. 2. Postcollision correlations C'13 on a single node between velocity directions differing 
by 120 deg, versus p for set # 2 8  at t =  2, 20, and 200; mean field values and simulation data 
(see Fig. 1 for meaning of symbols).  The mean field result at t = 104 is again barely different 

from that at t = 200. 
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The time dependence of the simulated values offo(t) is at all times in 
excellent agreement with the solution of the NLBE. This is surprising in 
view of the medium size velocity correlations observed in the precollision 
state ( C 1 2  ~ '  0.04 at p = 3 and t=200 in Fig. 2). The existence of these 
correlations indicates a violation of the basic assumption (2.5) of precolli- 
sion factorization under which the Boltzmann equation has been derived. 

4.2. Ve loc i ty  Correlat ions 

4.2.1. Postcollision States. Detailed balance models, including 
the biased lattice gases obeying detailed balance with respect to a non- 
universal equilibrium distribution, do not have any velocity correlations 
before or after the collisions, as discussed in Section 3. This has been tested 
for the unbiased FHP III model and for more than ten different parameter 
sets in biased models that obey the DB condition (3.5). It was found that 
the simulated values of the pre- and postcollision correlation functions Co 
and C~ are smaller than 1% over the whole density range, although the 
error bars start to increase for p < 1. 

Next we consider Figs. 3 and 4. They show for the specific sets # 28 
and # 13 the full collection of two-channel correlation functions (as a 
function of density) after 200 time steps. Similar measurements have been 
carried out for about 50 different parameter sets. As can be seen from 
Table II, for sets #28 and # 13 the ratios v ( ~ ) / w ( ~ )  do not satisfy the 
DB condition (3.5). In addition, the basic assumption (2.5) of the mean 
field theory on factorizability is violated. The existence of correlations with 
maxima of C12-~ +0.04 (#28 at p~-3) and C14~- +0.05 (#13 at p~- 1) 
in the precollision state shows that the corresponding single-node distribu- 
tion function po(s) is not factorized. Figures 3 and 4 show the measured 
values C~). of the postcollision correlations at t = 200 compared with the 
mean field predictions at t=200 (solid line). Surprisingly, the simulated 
and theoretical values of C~, with two exceptions, agree essentially within 
error bars, although we are dealing with very large postcollision correla- 
tions with extrema of C'13-~ +0.5 (#28) and C'13-~ -0.06 (#13). In the 
two exceptional cases the qualitative form of C]2 ( # 28) and C'14 ( # 13) are 
still correctly predicted by the mean field theory. The deviations from mean 
field theory in C12 are simply enhanced in C]2 by the biased collision rules. 
The ratio R =-Ctlzlsim./Ct12[m.f ~-~ 2 in set #28. In fact after 200 time steps 
the ratios R = 1.8-3, 1.4-1.6, 1.2-1.4, and less than 1.1 were found with the 
frequencies 2%, 3%, 5%, and 90%, respectively, in excellent agreement 
with the mean field predictions, even though the factorizability assumption 
was satisfied only in 43 % of the sets. 
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Fig. 3. Simulation data for single-node precollision correlations C o (left column) and 
postcollision correlations C~ (right column) versus p at t =  200 for set #28. The solid line in 
the right column gives the theoretical values calculated using mean field theory, 
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Fig. 4. Simulation data for single-node precollision correlations C o (left column) and 
postcollision correlations C~ (right column) versus p at t = 200 for set # 13. The solid line in 
the right column gives the theoretical values calculated using mean field theory. 
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The small or large deviations between simulations and mean field 
theory in postcollision correlations occur only in C'12 and C'~4. The latter 
always occur in non-detailed balance models where v(220)= w(220)=0, 
and not in other cases. Regarding the correlations C;~ and C'13, there is 
good agreement for all p and for all t. In general, if mean field and simula- 
tion results are different, the theory always underestimates the magnitude 
of the postcollision correlations. 

4.2.2. Precol l i s ion Correlat ions.  The postcollision distribution 
generates the precollision distribution through the free streaming step. A 
comparison of the pre- and postcollision simulation data in Fig. 3 shows 
that the free streaming step (which moves each particle at node r to a d~f- 
ferent nearest neighbor node) is quite efficient in destroying single-node 
correlations generated by the biased collision rules. The enormous correla- 
tions C'~2-~ +0.5 (#28)  and C'~4 -~ +0.13 (#13)  after 200 time steps at 
p ~- 1 are reduced to a level of 4 % in a single streaming step. Almost total 
destruction of large postcollision correlations has been observed for several 
parameter sets. For instance, the large correlations C]3 ~-+0.45 and 
C]4 -~ -0.45 in set # 100 and C]2 -~ +0.25 and C'~4 ~- +0.4 in set # 39, all 
centered around p _ 1, are reduced to the 5 % level in the precollision state. 

However, not all correlations are absent in the precollision steady 
state, but it appears difficult to predict the type, size, or even sign of the 
surviving precollision correlations from the calculated postcollision correla- 
tions. Only two types of postcollision correlations appear to be rather per- 
sistent under free streaming for very different sets of model parameters: (i) 
a large positive or negative correlation C]2 is only partially destroyed by 
free streaming and (ii) the simultaneous occurrance of negative correlations 
C'13 ~" - -1  --t- Ap (A ~ 1 ) and C'14 ~ -Bp  (1 ~< B ~< 2) at low densities yields 
a typical precollision correlation C~4 -~ - 1 + Ap (A ~- 1), as in Fig. 3. 

We also investigate the suggestion that average occupations fo(t) 
differing from the universal equilibrium value f0(oe)=-~p of the unbiased 
models are the cause of velocity correlations in pre- and postcollision 
states. This suggestion is false, as we shall see. Inspection of Table I shows 
that it is possible to exactly compensate the loss of rest particles in an ~11 
collision by a gain term in an ~,~ collision. For instance, take o~ = (300) 
and ~2 = (320). The condition fo(Oe ) = f(oo ) = +p, or equivalently Zo = z in 
(3.12), can be satisfied by setting all rates v(o~) = w ( ~ )  = 0 for ~ r (300), 
(320), and requiring balancing collision rates, 

w(300) + 2w(320) = v(300) + 2v(320) (4.2) 

This condition is satisfied by the choice 2v(320)=w(300)=0.2 of the 
self-dual set #13, which still violates the detailed balance conditions 
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(3.8)-(3.9). By duality we obtain v(400)=2w(420)=0.2. The simulations 
yield average occupation numbers that are at all times in excellent agree- 
ment with fo(t)= +p. However, the simulations show a sizable precollision 
correlation after 200 time steps with a maximum of C14 -~ +0.05 at p ~ I. 
The simulated values of postcollision correlations, with extrema 
C]2 ~- +0.03, C'13 ~ -0.06, and C]4-~ +0.12 for 1 < p < 2, are in good 
agreement with the mean field predictions, except for the correlation 
between opposite channels, where mean field theory predicts a maximum 
C]4~- +0.08 for l < p < 2 a t  t=200. 

In the mean field theory and detailed balance considerations equi- 
librium distributions can only depend on the interclass transition rates. 
However, simulations show that in non-detailed balance models the equi- 
librium distribution also depends on the intraclass rates. We have perfor- 
med five sets of simulations at t = 200, where q(320) was gradually changed 
from 0 to 1, with all other rates kept fixed. In doing so, the maximum of 
C12 ~ +0.1 in set #30 gradually decreases via set #28 to C12 ~- +0.02 in 
set #26, all other precollision correlations disappear, the postcollision 
correlation C'12 is reduced to its mean field value, whereas the remaining 
correlations C~1, C'13, and C]4 remain essentially unchanged and are in 
good agreement with mean field theory. A theory for these precollision 
correlations is totally lacking. 

Precollision correlations in basic equilibria of FCHC models have also 
been reported by Dubrutle et al. (~) and H6non. ~2) We make a brief com- 
parison. In the so-called semi-detailed balance version of the FCHC model 
the measured correlations are below noise level (less than 0.7%) in the 
reduced density range 0.32 < p/24<0.5/~) In the versions of the FCHC 
model that violate semi-detailed balance, positive and negative correlations 
between different directions ranging from 5% to 22% are observed at a 
reduced density p/24-~0.5, dropping toward lower densities. In the 
triangular models the correlations C12 and C~3 tend to be largest around 
the half-filled lattice, too, but Col and C14 tend to have their extrema for 
1 ~< p ~< 2. In the 27-bit FCHC-8 model, which has three rest particles, the 
correlation Col is below noise level. A similar tendency is present here, 
except in set # 3 and a closely related set, where a large negative correla- 
tion Cm ~- -0.1 at p -~ 1 has been observed. In their analysis of velocity 
correlations in the FCHC model strong negative correlations of -0.11, 
-0.08, and -0.22 [see also footnote to Eq. (4.1)] have been associated 
with the pseudo-4-dimensional geometry of the FCHC models contained in 
a macroscopic slab of size L x L x L x 2. Our simulations of set # 3 with 
only two nonvanishing interclass rates v(220)= 1 and w(420)= 1 show that 
strong negative correlations can be of dynamic origin also. 

In other non-detailed balance FCHC models H6non (2~ has observed 
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Pair correlation function G ( r - r ' )  versus p for set #28,  where r and r' are nearest 
neighbors. 

velocity correlations of 20-30% on the same node, vanishing correlations 
between nearest neighbor nodes, and 2-3% correlations between next 
nearest neighbor nodes. We have also observed correlations between the 
occupations of two velocity channels on different nodes. It appears that 
nearest and next nearest neighbor correlations are typically of the same 
size. Even after summing over all velocity channels at both nodes, so that 
positive and negative correlations largely cancel, a small positive correla- 
tion of about 1-2% (sets # 28-30) remains. The function so obtained is the 
pair correlation function G ( r - r ' )  defined as 

p 2 G ( r - r ' )  = (6p(r) 6p(r ' ))  = ~  (6si(r) 6sj(r ')) 
6 

(4.3) 

This function, for nearest neighbor sites, is shown in Fig. 5 for set # 28 as 
a function of  density. We have not yet performed systematic simulations of 
such properties, nor do we have a theoretical explanation. 

4.3. Metastable States 

There are some indications of metastable behavior that bares some 
similarity to that observed by H6non in a low-speed equilibrium. (11) We 
have performed simulations of pre- and postcollision correlations up to 
t =  1000 for a few different parameter sets (#3 ,  7, 28, 30, 38). In the 
majority of sets the correlations seem to have settled to a stationary value 
after about 200 time steps. However, in set # 30, C12 and C'~2 seem to be 
nonstationary even after 200 time steps, although all remaining correlations 
are wellbehaved (see, for instance, Fig. 2). We have observed the following 
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maxima in C12:0.04 ( t=20) ,  0.09 ( t=200) ,  0.17 ( t=500),  and 0.29 
(t = 1000); and in C]2:0.09 (t = 20), 0.14 (t = 200), 0.21 (t = 500), and 0.32 
(t = 1000). All maxima are located at p ~-3. For set #28, which differs 
from set #30  only through q(320) and r(420), a similar metastable 
behavior is observed, although the correlations are much smaller 
(C12-0.13 and C',2 --- 0.17 at t=2000).  The similarity with H6non's 
metastable states is that in his simulations the correlation range of the 
region where the spatial symmetry is broken also keeps growing on very 
long time scales. In the present simulations a possible breaking of spatial 
symmetries cannot be observed because of the applied spatial averaging. 

An explanation for the increasing fluctuations is totally lacking. We 
are currently investigating possible scenarios. Will the fluctuations finally 
settle for a stationary value or are we observing a metastable state that 
finally will make a transition to a different stable equilibrium? What is the 
dependence on the initial state? Is the chosen initial distribution perhaps in 
the attraction basin of some metastable state? Will slight modifications of 
the control parameters/rate constants stimulate transitions to stable 
equilibria? 

5. S U M M A R Y  A N D  OUTLOOK 

With the help of computer simulations and mean field theory we have 
studied both the approach to and the structure of the stationary state in 
biased lattice gases. This has been done by considering the mean occupa- 
tion number fj(t)  and the equal-time pre- and postcollision correlations 
Cu(t ) and C~(t) in (4.1) between different velocity channels. The mean field 
theory is based on the assumption that the occupation numbers on dif- 
ferent nodes are uncorrelated, and yields a nontrivial prediction for the on- 
node velocity correlations C~(t) directly after collision. The simulations 
were carried out on a biased 7-bit triangular lattice gas with many con- 
tinuously variable transition probabilities. In all cases the simulated 
occupation numbers are in excellent agreement with the mean field predic- 
tions. With respect to the velocity correlations, theory and simulations 
compare favorably only if the conditions (2.8) and (2.9) are satisfied 
simultaneously. In case of the 7-bit lattice gas, condition (2.9) is identical 
to the condition of detailed balance (3.5) or (3.8)-(3.9). In detailed balance 
models velocity correlations before and after collisions are absent in the 
steady state; both in the simulations (less than 1%) and in the theory, 
there exists an H-theorem and a nonuniversal equilibrium distribution 
(2.11) that depends explicitly on the transition probabilities A ~s. If, in addi- 
tion, the universality condition (2.13)--called "semi-detailed balance" in 
ref. 7--is satisfied, then the steady state distributions depend only on global 
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invariants and have the same universal form (2.12) as the Gibbs distribu- 
tion in ensemble theory. 

Next, we consider the case that condition (2.8) and condition (2.9) or 
the detailed balance condition (3.8) (3.9) are not satisfied. In that case the 
transition probabilities/collision processes are incompatible. The mean field 
theory assumes of course that precollision correlations Co(t ) are absent, 
but predicts nonvanishing postcollision correlations C~(t), which can be of 
appreciable size (see solid lines in Figs. 2-4). As long as precollision Cgi 
remain on the order of a few percent, the postcollision correlations in 
theory and simulations are in excellent agreement. However, we have also 
observed many cases of large precollision correlations. We have not yet 
been able to relate the size sign, or even type of these precollision correla- 
tions in any intuitive manner to the chosen transition rates. 

In a few cases of incompatible transition rates, we have observed 
possible metastable behavior in the pre- and postcollision correlations. 
New features of growing correlations appear only after 1000 or even after 
2000 time steps. Simulations for larger times have not yet been carried out. 

The problem of incompatible rate constants has relevance not only for 
fluid models, but also for chemical reactions (law of mass action). Correla- 
tions created by incompatible transitions (collisions/reactions) may only be 
partially destroyed by the intermediate propagation steps. It is not impor- 
tant whether the propagation step is ballistic (as in fluids and gas-phase 
reactions) or diffusive. 
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